A- Émission de la lumière.

A.1 Observation du spectre

On **observe directement la lumière émise par la source** et on l'analyse avec un spectromètre ou un spectroscope.

A.2 Rayonnement du corps noir

Type de corps	exemples	Aspect du spectre d'émission	Exemple de spectre
Solide, liquide ou gaz	Filament d'une	 Spectre continu Il se décale vers le bleu si la	900 °C
très dense à très	ampoule. Lave d'un volcan.	température de la source	5000 °C
haute température.	Une étoile.	augmente.	10 000 °C

A.3 Spectre de raies d'émission

Type de corps	exemples	Aspect du spectre d'émission	Exemple de spectre
Gaz à faible pression, excitation par décharges électriques, flash,	Éclairage publique Laser	 Spectre discontinu Il n'y a que certaines couleurs émises 	
		· Raies d'émissions.	

B- Absorption de la lumière.

B.1 Observation du spectre

La lumière blanche traverse un milieu avant d'être analysée par un spectromètre; Ce milieu va absorber certaines couleurs.

B.2 Expérience de cours : absorption de la lumière par un gaz de di-iode I_2 Schéma :

L' Univers - Chapitre 4 - Comment analyser la lumière des étoiles? 2/2

B.3 Spectre de raies d'absorption d'un gaz

Type de corps	exemples	Aspect du spectre d'absorption	Exemple de spectre
Gaz à faible pression	Atmosphère planète.	Le fond est un Spectre continu	
		 Présence de raies noires (raies d'absorption) typiques d'un type d'élément chimique. 	

B.4 Spectre de bandes d'absorptions (liquides, solides)

Type de corps	exemples	Aspect du spectre d'absorption	Exemple de spectre
Liquide ou solide transparent	Sirop, solutions en chimie. Filtres colorés, cristaux, pierres précieuses	 Le fond est un Spectre continu Présence de bandes noires (bandes d'absorption) typiques d'un type d'élément chimique. 	

C- Applications de la spectroscopie

La spectroscopie est utilisé pour faire de l'analyse chimique, pour analyser la structure de cristaux, pour étudier des réactions chimiques, pour caractériser, diagnostique.

Elle est utilisée dans de nombreux domaines scientifiques et technique, ainsi que dans les sciences du vivant et la médecine.

D- Exercices

☐ QCM p. 35	☐ Exercice 1 p. 37	☐ Exercice 2 p.37	☐ Exercice 3 p.37
☐ Exercice 4 p.37	☐ Exercice 5 p.37	☐ Exercice 6 p.38	☐ Exercice 7 p.38

E- Correction

QCM p.35: voir correction p.324. Poser des questions au professeur si besoin.

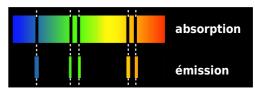
Exercice 1 p. 37:

1- On constate que le spectre est continu, toutes les couleurs sont présentes. Il sagit donc du spectre de la lumière blanche. 2.a - «nm» signifie «nanomètre» c'est à dire x10⁻⁹ m («un milliardième de mètre »). 2.b - Elle est associée à la longueur d'onde des ondes lumineuses. Elle définit la position d'une couleur dans le spectre de la lumière visible.

Exercice 2 p.37: 1-

2- Spectre continu (lampe à incandescence)

Exercice 3 p.37: 1- le C, spectre continu du violet au rouge.2- d'environ 400 à 750 nm (spectre « visible »). 3- 584 nm. Voir spectre page 34.


Exercice 4 p.37: **1-** Si la température diminue, le spectre se décale vers le rouge (Si la température augment, le spectre se décale vers le bleu) . **2-** ②, ① et ③.

Exercice 5 p.37: 1.a- Il permet de disperser, analyser la lumière. **1.b-** On peut utiliser un prisme. **2.** Le spectre *a* est un spectre de raie d'émission obtenu avec le montage **I** (gaz excité). Le spectre *b* est un spectre d'absorption de raies, réalisé avec le montage **II**, on traverse le gaz froid.

Exercice 6 p.38: Spectre 1: spectre de raie d'émission. Spectre 2 : spectre de raies d'absorption. Spectre 3 : spectre d'émission continu.

Exercice 7 p.38:1- Raies d'absorption. La lumière est absorbée par les atomes de lithium.

2- La lumière absorbée pour certaines longueurs d'ondes (en 1) sera réémise dans un spectre de raie d'émission, dont les positions coı̈ncideront.

