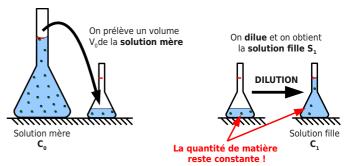
A- Objectif.

Comment prélever de très petites quantités de matières ? On va diluer une « solution mère » pour obtenir une « solution fille » moins concentrée.

B- Étapes d'une dilution.

Recopier le schéma et le texte page 317 de votre livre. À savoir refaire !


C- Conservation de la quantité de matière, calcul de la concentration.

Lors d'une dilution, on conserve la quantité de matière de soluté : $n_{initiale} = n_{finale}$.

D'après la définition d'une concentration :

$$C_{\it initiale} = rac{n_{\it initiale}}{V_{\it initial}} \ \ {
m et} \ \ C_{\it finale} = rac{n_{\it finale}}{V_{\it finale}} \ .$$

Donc ${C}_{ ext{initiale}}{ imes}{ imes}{V}_{ ext{initial}}{=}{C}_{ ext{finale}}{ imes}{V}_{ ext{final}}$.

Exemple:

On a une solution mère de glucose de concentration C_1 = 0,10 mol.L⁻¹. On veut fabriquer un volume V_2 = 250 mL une solution fille de concentration C_2 = 5,0x10⁻³ mol en diluant la solution mère. Quel volume V_1 de solution mère doit on prélever ?

Schéma de l'expérience :

Calcul de V₁:

La quantité de matière se conserve pendant la dilution, donc $C_1 \times V_1 = C_2 \times V_2$. L'inconnue dans l'équation est V_1 et on isole l'inconnue. Donc $V_1 = C_2 \times V_2$ / $C1 = 5,0 \times 10^{-3} \times 250$ mL / 0,10 = 12,5 mL. Il faut prélever 12,5 mL de solution mère, pour obtenir par dilution 250 mL de solution fille.

D- Exercices

Exercice 9 p192 Exercice 15 p193 Exercice 16 p193 Exercice 19 p194

E- Correction

Exercice 9 p192 Solution mère $C_0 = 6.20 \times 10^{-3} \text{ mol.L}^{-1}$. Solution fille $C_f = 3.10 \times 10^{-4} \text{ mol.L}^{-1}$; $V_f = 200.0 \text{ mL}$

1- Facteur de dilution F (voir page 188) $F = C_0 / C_f = 6,20x10^{-3} / 3,10x10^{-4} = 20$. **2-** On écrit la conservation de la quantité de matière lors de la dilution: $C_0 \times V_0 = C_f \times V_f$. On cherche le volume prélevé V_0 donc on isole ce paramètre dans cette équation et on trouve $V_0 = C_f \times V_f / C_0$. On effectue le calcule $V_0 = 3,10x10^{-4}x \cdot 200 / 6,20x10^{-3} = 10$ mL. **3-** Voir page 317 du livre. À savoir refaire !

Exercice 15 p193 1- Facteur de dilution $F = C_0 / C_f$. Comme $C_0 \times V_0 = C_f \times V_f$ on a aussi $C_0 / C_f = V_f / V_0$ donc $F = V_f / V_0$. Au départ, le volume initial est $V_0 = 250$ mL = 0,250 L, et à la fin $V_f = 1,0$ L. Donc F = 1,0/0,250 = 4. **2-** $C_m = 152$ g.L⁻¹. On a un facteur de dilution $F = 4 = C_0 / C_f$, donc $C_f = C_0 / F = 152$ g.L⁻¹ / 4 = 38 g.L⁻¹. **3-** On connaît le volume de la solution fille et sa concentration $V_S = 50,0$ mL et $C_S = C_m / 10 = 3,8$ g.L⁻¹ et la concentration initiale $C_f = 38$ g.L⁻¹ (dans la bouteille). On cherche le volume à prélever V_f . Comme on conserve la quantité de matière pendant la dilution : $V_S \times C_S = V_f \times C_f$ et on isole $V_f = V_S \times C_S / C_f$ donc $V_f = 50,0 \times 3,8 / 38 = 5,0$ mL. Protocole page 317 du livre. **4-** Protéger <u>en priorité</u> les yeux et les voies respiratoires, à cause du chlore qui irrite les muqueuses humides: yeux, poumons. Éventuellement les mains peuvent être aussi protégées. **5-** Dégagement de dichlore Cl_2 qui est un gaz très nocif (utilisé dans certains gaz de combat ou comme désinfectant très puissant).

- **Exercice 16 p193** 1- Le coureur utilise 6 morceaux de sucre soit une masse m=6x5,6=33,6g. La masse molaire du saccharose est $M(C_{12}H_{22}O_{11})=12xM(C)+22xM(H)+11xM(O)=12x12,0+22x1,0+11x16=342$ g.mol $^{-1}$.Donc on peut calculer la quantité de matière en saccharose $n=m/M=33,6/342=9,8x10^{-2}$ mol. Cette quantité de matière est utilisée pour fabriquer 750 mL = 0,750L de solution sucrée. Donc la concentration est $C=n/V=9,8x10^{-2}/0,750=0,13$ mol.L $^{-1}$.
- **2-** Avant la dilution $V_0 = 0.750/3 = 0.25$ L et $C_0 = 0.13$ mol.L⁻¹. Après la dilution $V_f = 0.750$ L et $C_f = ?$. En isolant C_f on obtient $C_f = C_0 \times V_0 / V_f = 0.13 \times 0.25 / 0.75 = 4.4 \times 10^{-2}$ mol.L⁻¹.

Exercice 19 p194 1- On utilise la relation $C_f = C_0 x V_0 / V_f = 2,0 x 10^{-4} x V_0 / 10,0$. On trouve (en mol.L⁻¹): $2,0 x 10^{-5}$; $4,0 x 10^{-5}$; $6,0 x 10^{-5}$; $8,0 x 10^{-5}$; $1,0 x 10^{-4}$ **2-** Burette graduée, comme en TP. **3-** $6,0 x 10^{-5} \leqslant C_s \leqslant 8,0 x 10^{-5}$ **4-** $C_{massique} = 1,0 mg/100 mL = 1,0 x 10^{-3} g / 0,100 L = 0,010 g/L. Si m = 0,010 g et si M(KMnO4) = M(K) + M(Mn) + 4xM(O) = 39,1 + 54,9 + 4x 16 = 158 g alors on a n = m/M = 6,3 x 10^{-5} mol. Donc pour 1L de solution contenant les 10 mg , on a une concentration de <math>6,3 x 10^{-5}$ mol/L.

5- il y a accord avec l'échelle de teinte (voir 3-)