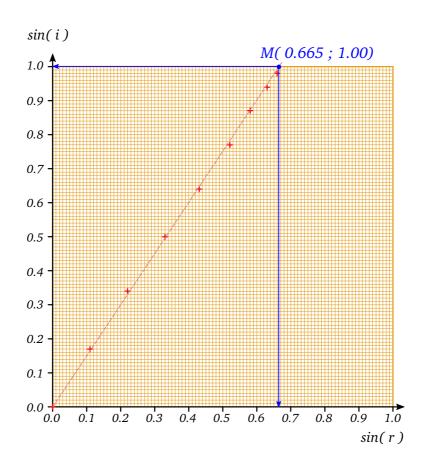
TP Réfraction de la lumière - correction

Résultats de mesure


i (°)	0	10	20	30	40	50	60	70	80
r (°)	0	6,5	13	19,5	25,5	31	35,5	39	41

Résultats des calculs

$\sin(i)$	0,00	0,17	0,34	0,50	0,64	0,77	0,87	0,94	0,98
$\sin(r)$	0,00	0,11	0,22	0,33	0,43	0,52	0,58	0,63	0,66

Graphique

On trace sin(i) en fonction de sin(r)

Recherche de l'équation de la droite

On observe une allure linéaire avec une droite passant par l'origine d'équation sin(i) = a. sin(r)Le point M appartient à cette droite et ses coordonnées vérifient l'équation de la droite donc

$$1,00 = a.0,665$$

donc

$$a = 1,00/0,665$$

$$a = 1,50$$

Choix du modèle

$$i=a\cdot r+b$$
 faux $\sin{(i)}=a\cdot\sin{(r)}+b$ faux

$$\sin(i) = a \cdot \sin(r)$$
 vrai si on prend a = 1,50

$$i = a \cdot r$$
 faux

$$n_1 \cdot \sin(i) = n_2 \cdot \sin(r)$$
 vrai si on prend $n_1 = 1,00$ et $n_2 = 1,50$