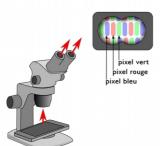

1- Analyse du spectre de la lumière transmise par un filtre

On réalise le **spectre de la lumière blanche** d'une lampe halogène à l'aide du spectromètre ULICE. Ce **spectre continu** servira de référence.

Ensuite, on mesure les **spectres de la lumière transmise à travers divers filtres colorés**. On les **dessinera** et on **notera quelles couleurs primaires ont été absorbées** par le filtre.



On se limitera aux longueurs d'ondes entre 450 et 650 nm (les filtres ne bloquent pas le proche infra rouge).

Dessin du spectre simplifié de la lumière incidente	Type de filtre	Dessin du spectre simplifié de la lumière transmisse	Couleurs primaires absorbées.
100 % 100 % 100 δ00 700 λ (nm)	Rouge		
	Vert		
	Bleu		
	Jaune		
	Cyan		
	Magenta		

W. Fortin 1 / 2 physicus.free.fr

2- Rendu des couleurs par un écran de smartphone

On photographiera chacun des huit rectangles colorés de la mire.

Chaque **photographie affichée** sur l'écran du téléphone sera ensuite **examinée sous la loupe** binoculaire pour **observer l'aspect des pixels** et des photophores rouges, verts et bleus.

On **dessinera**, pour chaque couleur de la mire, **l'aspect (allumé ou éteint) des trois photophores RVB** d'un pixel. L'aspect des pixels change selon le modèle de téléphone.

Couleur photographiée	Aspect du pixel RVB sur l'écran du smartphone		
Rouge			
Vert			
Bleu			
Jaune			
Cyan			
Magenta			
Noir			
Blanc			

W. Fortin 2 / 2 physicus.free.fr